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1. INTRODUCTION

Currently, the most widely used design for kinetic energy, antitank applications is the
gun-launched, fin-stabilized, long-rod projectile. The cross-sectional diameter of the rod s
much smaller than the diameter of the gun bore. Fins span the area bet veen the rod and the
gun tube. Therefore, a sabot (or carrier) is required to provide obturation for the projectile
and to minimize its in-bore balloting. Once free of the gun tube, the sabot must be discarded
in order to perimnit unconstrained, low-drag flight to the target. The sabot is divided into
three or four comporents along axial planes. For smooth bore gun tubes, these components
separate from the projectile under the action of elastic and aerodynamic loads. Figures |

aud 2 show a photograph and shadowgraph of typical sabot discard during free thight.

it has been demonstrated (Schimidt et.al. 1978) that accodynamic interference generated
by the sabot components can be a significant source of projectile launch disturbance leading
to unacceptable loss of accuracy at the target. Perturbations to the projectile’s trajectory are
magnified by geometric asymmetry in the discard pattern and by extended periods during
launch when the sabot components are in close proximity to the projectile. A detailed
understanding of the three-dimensional shock/boundary-layer interference flowfield between

the sabot and the projectile (see Figure 2) is not available.

An extensive experimental program to inve .tigate the acrodynamics of sabot discard has
been conducted (Schmidt 1981). During these tests, a projectile and three sabot components
were sting-mounted in the NASA Langley Unitary Plan wind tunnel facility 4 x 4 {t test sec-
tion. The model configuration included a stationary cone-cylinder projectile (without fins)
at zero angle-of-attack and three 120° included-angle sabot components located symmetri-
cally around the projectile. Figure 3 shows a schematic (cross-section) of the wind tunnel
mmodel (one sabot shown). The cylinder section of the projectile was 50.8mmn in diameter; the
projectile had a length-to-diameter ratio of 10.5 and a 30° included-angle conical nose. Fifty
static pressure taps were positioned on the surface between the 120° planes of symmetry.
with four taps on the conical section. The sabot had cylindrical inner and outer surfaces
of radi 25.4 and 76.2mm, respectively, with the a leading edge chamfer of 10v. Fifty static
pressure taps were located on the inner and outer surfaces. The test Mach number and
Reynolds number were 4.5 and 6.6 million per meter, respectively. A typical flight Reynolds
number of 89 million per meter could not be reproduced in the tunnel. Test results showed
regions of shock/boundary-layer interaction, separated flow and other viscous phenomena

which are sensitive to the Reynolds number.




Initial analytical work for steady state sabot discard acrodyvnamics relied on the Newto-
nian flow approximation and empirical aerodynamic interaction analyses, for example, the
AVCO code (Crinn et.al, 1977, Seigelman et.al. 1933). Considecation was limited 1o a gen-
cral sabot contiguration, bound radially by two cvlindrical surfaces and axially by two couical
surfaces. These assumptions make discard computations tractable and in some cases rep-
resent accurate approximations. However, it is apparent that the multiple shock /expansion
mteraction flowtield between the projectile and sabot petals is an essential part of the anal-
vsix. The initial version of the AVCO code (Crimi et.al. 1977) evaluated the acrodynamic
loadings on the sabot segments using Newtonian theory and a subsonic/supersonic inlet
model; pressure forces on each surface of the segments, including sabot sides, were obtained
separately and simmed to provide results for total force and moments (excluding shear stress
compuonents). The code assumed that the aerodynamic coefficients for the projectile were
known. Although the sabot separation process is initially dominated by acrodynanie imterac-
tion. the code assumed one-dimensional flow between the bodies. Receut versions (Seigelman
et.al. 1983) include an integrated tlow element approach utilizing local shock fexpansion pro-
cedures based on sabot surface pressures measured during wind tunnel tests (Schinids 1981).
These test data are used to determine pressure levels on certain sabot locations with linear
variations assumed between these points. As a result, the code includes the effects of pres-
sure pulses on the bodies caused by impinging and reflecting shock waves. To calculate the
inttial sabot lift-off acrodynamic forces and then again when the sabot petals are not in close
proxnnity to the projectile, Newtonian flow theory is used. In some cases, however, these
code improvements produced overestimates of the discard process in contrast to initial code

predictions.

This report describes computational fluid dynamics (CFD) solutions applied to the three-
dimensional (3D) Navier-Stokes equations for symmetric sabot discard. During svmmetric
discard multiple sabot components are assumed to follow identical trajectories away from the
projectile, and the projectile is assumed to be at zero angle-of-attack. As shown in Figure
1. the computational domain can therefore be limited to a smaller portion of the entire
flowfield around the configuration; this reduces computational grid size, computer memory,
and computer run time. For three sabot components this demain spans a 60° sector from
sabot midplane to symmetry plane between neighboring sabot components. For asymmetric
discard the computational domain would be greatly expanded (i.c. a full 3607 sector) with
a corresponding increase m computer requirements. The portion of the launch cycle that
involves strong aerodynamic interference between the projectile and the sabot components
is examined. Thus, simulations are performed for small vertical separation of the sabot {from
the projectile surface. Ay/D < 1 (D = projectile rod diameter = 1 cal. or 50.8mm in

Figure 3) and sabot angle of atiack a < 10°. Previous work described code validation with




wind tunnel results (Nusca Aug. 1990, Oct. 1990). A four-stage sabot discard sequence was
numerically simulated for the wind tunnel model configuration (Nusca Apr. 1951, Jul. 1991).
In this report these simulations have been extended to ten stages with resultant aerodynamic
forces and moments computed from the flowfield. The symmetric sabet. discard trajectory is
then simulated and compared to results obtained using the AVCO code. This quasi-steady,
programmed simulation ignores the flow time dynamics and does not link the acrodynamic
forces to the sabot motion. However, such a simulation serves as a prelude to computations
that utilize coupling of unsteady aerodynamics and rigid-body motion. The flowfield for a

MS65 projectile/sabot is also simulated.

2. COMPUTATIONAL APPROACH

C'FD can be used to simulate the compressible flowfield around aerodynamic bodies by
solving the 3D Reynolds-averaged Navier-Stokes (RANS) equations. The USA-PG3 code was
developed by Chakravarthy (1985, 1988). The RANS equations are written using a perfect
gas assumption. Both laminar and turbulent flows can be investigated thus, a turbulence
model (Baldwin 1978) is required for closure. In addition, backflow regions can be present
thus, a backflow turbulence model (Goldberg 1986) is included. The equations are trans-
formed into the conservation law form and discretized using finite-volume approximations.
The USA-PG3 code uses a class of numerical algorithms termed total variational diminishing
(TVD). The resulting set of equations is solved using an implicit, factored, time-stepping
algorithm. The solution takes place on a computational grid that is generated around the

configuration in zones: zonal boundaries are transparent to the flowfield.

2.1 Equations of Motion. The RANS equations for 31 flow are written in the fol-

lowing conservation form. The dependent variables u, v, w, and € are mass-averaged.
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Arrays ( and H are similac in form to array F (see Nusca Oct. 1990). Normal stress
(o). shear stress (1), heat transfer (¢) and energy (e) are defined elsewhere (Nusca Oct.
1990). The laminar and eddy viscosities, g and gy, are implicitly divided by the reference
Reynolds number (Re). The flow medium is assumed to be a perfect gas satisfying the
cquation of state p = pRT. A power law (Mazor et.al. 1985) is used to relate molecular
viscosity, g, to temperature. The laminar and turbulent Prandtl numbers. Pr and Pr,, are
assumed to be constant with values of 0.72 and 0.9, respectively. The ratio of specific heats,
v.1s also assumed constant. Assuming a time-invariant grid and using the transformation of
coordinates implied by 7 = ¢, £ = £(x,y,z2), n = n(z,y.2), and ( = ((,y.z). Equation | can
be recast into the conservation form where €, 7, and ( are the new independent variables,
and xg, Ty, Te, Yeo Yn, Yoo 26 2y, and z¢ are the nine transformation cocflicients obtained
numerically from the mapping procedure. Transformed time is represented by 7.
ow 1

The “Area™ in Equation 2 denotes the area of the finite volume cell being considered at the

[(yn I = 2y G + (~yeF + 7¢G)y + Gy — H/y] =0 (2)

time of discretization of the equations.

The shock/boundary-layer interference flowfield between projectile and sabots can in-
clude regions of recirculating flow. To improve the predictive capability of separated flows
using RANS codes a new turbulence model has been recently developed by Goldberg (1936).
The new model is based on experimental observations of detached flows and allows turbulence
due to local shear effects to be taken into account in addition to wall-shear contributions.
The velocity scale function, which is normally yw. is modified as (y — y.)w (for y > y.). Here,
w is the magnitude of the local vorticity and y. is the location away from the wall where the
vorticity first diminishes to a small fraction (< 5%) of the local maximum magnitude. From
this location cnward the length scale is given by ynax — ¥ The model prescribes turbulence
kinetic energy and dissipation analytically within backflows. A formrila for the eddy viscos-
ity {;i,) within backflows is derived and used for the RANS equations when calculations are
done inside separation bubbles. Outside of them, another turbulence model (Baldwin et.al.

1978} supplies the values of eddy viscosity.

2.2 Computational Algorithm. The spatial discretization technique for the equa-

tions of motion must successfully capture the complex physics of interacting projectile/sabot
flowfields. The TVD formulation for the convective terms along with a special treatment of
the dissipative terms (Equation 1) provides an appropriate simulation. In recent vears, TVD
formulations have been constructed for shock-capturing finite-difference methods (Chakravarthy
ct.al. 1935.1983). Near large gradients in the solution (extrema) TVD algorithms automat-

ically reduce to first-order accurate discretizations locally while away from extrema they




can be constructed to be of higher-order accuracy. This local effect restricts the maximum
global accuracy possible for TVD algorithms to third order for steady-state solutions. TVD
methods manifest many properties desirable in numerical solution procedures. By design
they avoid numerical oscillations and “expansion shocks™ while at the same time being of
higher-order accuracy. TVD formulations are also based on the principle of discrete or
numerical conservation which is the numerical analog of physical conservation of mass, mo-
mentum, and energy. Thus, TVD algorithms can “capture” flowfield discontinuities (e.g.
shock waves) with high resolution. At a fundamental level they are based on upwind al-
gorithms: therefore, they closely simulate the signal propagation properties of hyperbolic
equations. Algorithms based on the TVD formulation are completely defined. In contrast,
algorithms based solely on central differences involve global dissipation terms for stability
and have one or more cocflicients that must be judiciously chosen to achieve desirable re-
sults. Anv conventional time discretization method suitable for the Navier-Stokes equations
can be used together with this space discretization methodology: for example, approximate

factorization and relaxation techniques.

2.3 Computational Grid. Numerical simulation of the interacting flowfield about

projectile/sabot combinations is complicated by the non-axisymmetric, multiple-wall geom-
etry. The computational domain is divided into zones of simple geometric shape. In each
zone an algebraic grid is generated with grid clustering near walls and high tlow gradient
regions. The computational method is constructed such that each zone is considered an inde-
pendent module interacting with other zones before or after the information corresponding
to cach zone is updated one cycle. Zonal boundaries are transparent to the flowfield. A
typical 6-zone grid used for computations described in this report is designed as follows (see
Figures 5 and 6): grid zone 1 covers the projectile from nose to base. zone 2 covers the
area between zone | and the inner surface of the sabot, zone 1 covers the area between the
outer surface of the sabot and the uppermost extent of the computational domain. zones 5
and 6 cover the projectile and sabot base regions. respectively. Zones 1 thrn 6. exclnding
zone 3. extend from o = 0 to 60° in the azimuthal direction. Grid zone 3 covers the area
between the sabot and the azimuthal extent of the computational domain. The entire 6-
zone grid consists of 300,000 nodes and requires 10 million words of memory on a CRAY:2

supercomputer. Converged solutions require about 10 CPU hours.




3. RESULTS

Figure 7 shows the measured (Schmidt 1981) and computed pressure distributions over
the projectile and sabot surface in the pitch plane; the pitch plane (see Figure 4) bisects
the azimuthal olanform of the sabot. Three sabot components are modeled with sabot
bases aligne  with the projectile base, Ax/D = 0, projectile surface and sabot inner surface
vertically separated by Ay/0 = .75, with the sabots at zero angle-of-attack. Laminar
houndary laver modeling was employed; turbulent solutions are described elsewhere (Nusca
Aug. 1990, Oct. 1990). Computed pressures on the projectile surface agree favorably
with the magnitude and location of a measured pressure peak (r/D =~ 1.22) as well as
clevated pressures preceding this peak, 2 < x/D < 4.22. The location of this pressure peak
corresponds to the termination of a low speed flow region on the projectile. Downstream of
the pressure peak the agreement between computation and measurement is also favorable.
On the inner surface of the sabot. numerical simulation adequately predicts the pressure
tevel and trend on the sabot slant surface. 2.75 < z/D < 3.94. Pressure trends on the rest

of the sabot section agree with ineasurements including a pressure rise at r/f) ~ 5.5.

Nusca (1990, 1991) describes further results obtained for the wind tunnel model. summa-
rized here. For cases when the sabot petals are close to the projectile (Ay/D < .75), a low
speed (M < 1) recirculating flow pocket forms between the projectile and the beveled section
of the sabot petals. This causes a strong impinging oblique shock on the projectile surface
where the pocket forms and a high pressure pulse where the pocket terminates. As the sabot
petals discard, a normal shock, formed at the leading edge of the sabot. becomes an oblique
shock that intersects the projectile surface in a regular reflection. Inviscid flow simulations
require significantly less computer time by excluding the viscous terms in the Navier-Stokes
equations. However, the inviscid simulation predicts lower pressures on the projectile and
sabot than measured or predicted by laminar and turbulent simulations. Turbulent calcu-
lations are similar to laminar for the low Reynolds number wind tunnel data. Comparison
of C'FD predictions with projectile surface data measured azimuthally about the projectile
agree with the trend but not the magnitude of these pressures (in particular the pressure
peak. as shown in Figure 7, reduces as measured azimuthally about the body). Azimuthal
grid refinement increases the level of agreement. Computations for the 2D/axisymmetric
cqmivalent of three sabot petals (1.e. petals joined into a concentric tube with the projectile
centerline) are computationally immexpensive but result in flowfields that are very different

from the 31 case.

Figures 8 through 17 show computed laminar, steady-state, pressure contours in the

pitch plane for the forward part of the projectile/sabot configuration and ten stages of the

e ————



programmed discard sequence. Three horizontal lines extending from z/D = 0 to 7.03 are
zonal grid boundaries. Large flow gradients (e.g. shock waves) are indicated by clustering of
pressure contour lines. Pressure contour levels are the same for Figures 9-17, 1 < P/P, <
40, AP/ P, = .5; however, for Figure 8, 1 < P/P,, < 100 AP/P, = 1 due to higher

stagnation pressures.

The programmed discard sequence shown in Figures 8-17 covers four vertical displace-
ments of the sabot inner surface with respect to the projectile surface (Ay/D) and six sabot
angles of attack (with respect to the projectile). The projectile was assumed to be at zero
vaw with respect to the freestream and the Mach number was constant as 4.5, Since the time
during which the sabot petals and projectile are in close proximity is usually short (about 2
ms or 1.5 meters from the gun), the assumption of constant Mach number is not unrcason-
able. This quasi-steady. programmed simulation ignores the flow time dynamics and does
not link the acrodynamic forces to the sabot motion. However, such a simulation serves as
a prelude to computations that utilize coupling of unsteady acrodynamics and rigid-body

motion.

As scen in Figures 8-17, the sabot generates a strong series of shock waves, beginning
as a detached nearly-normal shock that intersects the projectile surface as a strong oblique
shock, and ending as an attached oblique shock that intersect the projectile surface in a
regular reflection. Flow between the sabot inner surface and the projectile surface begins as
a choked nearly-uniform high pressure field with transition into reflected shocks (from sabot
hack to projectile) that become more pronounced. Beginning with Figure 12, a low pressure
recirculation bubble develops on the sabot inner surface extending from x/D = 3.91 to the
uext shock impingement on the sabot surface. Combined with the high pressure ou the sabot
beveled sectic - (2,75 < wfD < 3.94) this low pressure region provides a force couple that

promotes sabot discard.

Using the simulated sabot discard sequence described above, the corresponding acrody-
namic forces (lift and drag) and pitching moment can be computed. This is accomplished
by integrating the sabot surface pressure and shear stress distributions for cach stage of
the discard sequence. The sabot mass properties are used to compute vertical and hori-
zontal accelerations which are assembled in a table as functions of sabot Ay/D aud a. A
modified poimt-mass trajectory model is used to compute the sabot center of gravity (CG)
location as a function of time using double-interpolation from values in the table. Figure 18
shows a comparison between the sabot CG location (both in the axial and radial directions)
computed using the AVCO semi-empirical code and ‘he present simulation using CFFD. The
present predictions match the AVCO values for carly times, but diverge later in the simu-

lated discard event. In the AVCO simulation sabot discard progresses faster than predicted
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using the current method. The relatively good agreement for early times in the discard
event may be a result of the sabot /projectile interference methods included in the AVCO
code. Reasons for discrepancies i the predictions at later times are still under investigation.
Ouc possibility is that the Newtonian theory used to predict acrodynamic forces when the
sabot is not in close proximity to the projectile, results in lift and drag values that are larger
than predicted using CFD. In comparing the AVCO prediction to that using CIFD, several
points should be noted. Both methods used the same sabot geometry and mass properties,
freestream flow conditions and assuied a symmetric discard. Both methods are guasi-steady
in nature, using a database of steady acrodynamic force predictions to simulate a dynamic
event. However, the source of the aerodynamic data is very different between the codes (see
“Introduction™ for a discussion of the AVCO code). By virtue of the rapid acrodynamic
methods incorporated into the AVC'O code, a much larger acrodynamic force and moment
database is available. The trajectory time-integration step for the AVCO code was much

smaller that that used in the present study.

Figure 19 shows the projectile/sabot configuration of the Army MS6) anti-tank round.
The configuration has been altered somewhat in order to simplify computational grid gener-
ation. These alterations ave also illustrated in Figure 19. The sabot was located .75 calibers
above the projectile (1 caliber = 38mm) and at zero angle-of-attack. Figure 20 shows the
computational grid. A simulated sabot discard sequence like that used for the wind tunnel
model is in progress. Figure 21 shows the laminar flow pressure contours for the M865. The
Revnolds number for this flow is 6.6 million per meter and the freestream Mach number is
4.5.

4. CONCLUSIONS

CFD solutions of the 31 Navier-Stokes equations have been applied to the aerodynamics
of svinmetric sabot discard. A steady simulated sabot discard sequence using fixed sabot
locations (with respect to the projectile) reveals shock/shock and shock /boundary-laver in-
teractions in the flowfield. The freestreain Mach number was 1.5 and laminar boundary layer
modeling was employed for Reynolds number 6.6 million per meter. Numerical simulations
have also been performed using Reynolds number 89 million per meter anl flows with tur-
bulence modeling (Nusca Aug. 1990). The steady-state approach that uses jredetermined
sabot positions has lead to enhanced understanding of the discard event, serving as a prelude
to computations that utilize coupling of unsteady ae,o:f; .amics and rigid-body motion. A
technique for the integration of surface pressures and shear stress was developed for the wind

tunnel mode! sabot.




Numerical mesh generation for the solution of complex flowfields about realistic projec-
tile/sabot configurations may be greatly simplified by the use of unstructured (i.c. finite-
clement like) grids. Figure 22 shows the planar view (i.e. slice through the pitch plane of
the projectile/sabot) of a typical unstructured grid for the Army M829 sabot. Solution of
the Euler equations on unstructured grids is being accomplished by Chakravarthy (1991).
Work on unstructured grids and moving grid zones will eventually lead to a more realistic

simulation of the discard event.
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Figure 1. Photograph of typical kinetic energy long-rod projectile in free flight

during three-petal sabot discard.

Figure 2. Shadowgraph of typical kinetic energy long-rod projectile in free flight

during four-petal sabot discard.

1




Y-NORMAL COORDINATE (CAL)

6))

S O

W

"

N

7 ° S 7777277772727
4§‘ //‘///T///j//{ z ‘/ 777771
o "2 3 4 5 6 7T 8 9 |0 Il

X- DOWNSTREAM COORDINATE (CAL)
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Figure 7. Laminar flow pressure distributions for projectile and sabot surfaces

in the pitch plane (¢ = 0,180°), Az/D = 0. Ay/D = .75. a = (°.
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Figure 12. Laminar llow pressure contours in the pitch plane (o = 0. 1307) for

Ar/D =0, Ay/D =075, a = 2°.
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Figure 13. Laminar flow pressure contours in the pitch plane to = 0.180°) for

Az/D = 0. Ay/D = 0.75. a = 1.
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Figure 14. lLaminar flow pressure contours in the pitch plane (0 = 0.180°) for

LHx/D =0, Ay/D = 0.75, a = 6°.

e\

NS

-
" N\ TN
=

Projectile

0.0  1.406  2.812 4.218 5625 7.031

X/D

Figure 15. lLaminar flow pressure contours in the pitch plane (o = 0.1507) for

ArfD =0, Ay/D =075 a =8°.
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Figure 19. MS865 projectile/sabot configuration. Solid linc is actual geometry.

Dashed line is computational geometry.
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Figure 20. Structured grid (pitch plane view) for M829 projectile/sabot.
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Figure 21. Laminar flow pressure contours in the pitch plane (¢ = 0, 180°)
for M865 sabot, Az/D = .957, Ay/D = .75, a = (°.
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Figure 22. Unstructured grid (pitch plane view) for M829 projectile/sabot.
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LIST OF SYMBOLS

cal = caliber, D
Cp = specific heat capacity, constant p
. Cy = specific heatl capacity, constant volume
; D = diameter of projectile cylinder section
¢ = specific total internal energy
G H = flux vectors (Eq. 1)
M = Mach number
Pr = Prandtl number
p = pressure
q = heat transfer rate
R = specific gas constant
T = temperature
t = time
U = mean streamwise velocity
ULV, W = cartesian velocity components
i = dependent variable vector (Eq. 1)
NI = cartesian coordinates
AN = horizontal distance between projectile and sabot bases
A = vertical distance between projectile and sabot surfaces
- Greek Symbols
g a = sabot angle of attack wrt the projectile
4 = ratio of specific heats, ¢,/c,
¢ = transformed coordinate
1 = transformed coordinate
I = molecular viscosity

£ = transformed coordinate




1

density
normal stress tensors
transformed time

shear stress tensors

azimuthal angle, 0 and 180° for pitch

plane, clockwise looking downstream

turbulence quantity

denotes spacial components

= (-direction transform coefficient
= n-direction transform coefficient
= £-direction transform cocflicient

= {reestream quantity
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